Logical framework-like encoding of inference rules]

Vladimir Voevodsky ${ }^{2}$

March, 2017
For an inference rule with premises $\Gamma \triangleright T_{1}$ type and $\Gamma, x_{1}: T_{1} \triangleright T_{2}$ type and product of the form $\Gamma \triangleright \operatorname{Sum}\left(T_{1}, x_{1} \cdot T_{2}\right)$ type the format of the LF-style encoding is

$$
\text { Sum : } \prod_{T_{1}: \text { Type } T_{2}: T_{1} \rightarrow \text { Type }} \prod \text { Type }
$$

Therefore, types of the structure

$$
\left(A_{1} \rightarrow \text { Type }\right) \rightarrow \ldots \rightarrow\left(A_{n} \rightarrow \text { Type }\right) \rightarrow \text { Type }
$$

where A_{i} are small type expressions, should be allowed.
Let us check something else. Suppose the premises are $\Gamma \triangleright T_{1}$ type, Γ, x_{1} : $\operatorname{Sum}\left(T_{1}, T_{1}\right) \triangleright T_{2}$ type and the product is $\Gamma \triangleright \operatorname{Sum}_{2}\left(T_{1}, x_{1} \cdot T_{2}\right)$ type. Then

$$
\text { Sum }_{2}: \prod_{T_{1}: \text { Type Sum }\left(T_{1}, T_{1}\right) \rightarrow \text { Type }} \prod_{T y p e}
$$

The fact that types of structure

$$
(\text { Type } \rightarrow \text { Type }) \rightarrow \text { Type }
$$

are not necessary, somehow corresponds with the fact that in the syntax of type theory, variables are always elements of types and never types. If I could have as the premise $\Gamma, X:$ Type $\triangleright T:$ Type and as the product $\Gamma \triangleright S(X . T)$ type then for the LF-style encoding I would have

$$
S: \prod_{\text {T:Type } \rightarrow \text { Type }} \text { Type }
$$

which is the same as

$$
S:(\text { Type } \rightarrow \text { Type }) \rightarrow \text { Type }
$$

If we had it, it would be the following $-T(X)$ would be any construction that from a type expression A makes another type expression $T(A)$ while S will be a construction that from any such construction makes a type. For example, S could be evaluating T on nat. If we add $\Gamma \triangleright T_{0}$ type as another premise then we can have $S\left(T_{0}, X . T\right)=T\left(T\left(T_{0} / X\right) / X\right)$.

What is interesting however is that the structure ($\mathbf{R R}, \mathbf{L M}$) is directly related to the fact that the premises of the inference rules generating types or elements of types in the Agda-LF-style encoding can only have the form Type, $(\vec{x}: \vec{A}) \rightarrow$ Type, B or $(\vec{x}: \vec{A}) \rightarrow B$, but never Type \rightarrow Type.

[^0]To follow further with the LF-style encodings one needs to provide encodings of the inference rules for the type and element equalities. Suppose you have a universe U with the $T y$ constructor that produces a type from an element of the universe. One needs the rule with the premise $\Gamma \triangleright a \equiv b: U$ and the product $\Gamma \triangleright T y(a) \equiv T y(b)$.

One can encode a type equality rule as a pair of the problem is in how to use such equality rules in the subsequent inference rules

[^0]: ${ }^{1} 2000$ Mathematical Subject Classification: 18D99, 18C50
 ${ }^{2}$ School of Mathematics, Institute for Advanced Study, Princeton NJ, USA. e-mail: vladimir@ias.edu

